Page contents not supported in other languages.
From Wikipedia, the free encyclopedia
Featured articleHelium is a featured article; it (or a previous version of it) has been identified as one of the best articles produced by the Wikipedia community. Even so, if you can update or improve it, please do so.
Featured topic starHelium is part of the Period 1 elements series, a featured topic. This is identified as among the best series of articles produced by the Wikipedia community. If you can update or improve it, please do so.
Main Page trophyThis article appeared on Wikipedia's Main Page as Today's featured article on May 31, 2004.
On this day... Article milestones
January 19, 2004Refreshing brilliant proseKept
April 6, 2005Featured article reviewKept
August 5, 2008Featured article reviewKept
August 6, 2008Featured topic candidatePromoted
August 16, 2008Featured topic candidatePromoted
July 31, 2014Featured topic removal candidateKept
February 3, 2023Featured topic removal candidateDemoted
On this day... Facts from this article were featured on Wikipedia's Main Page in the "On this day..." column on August 18, 2005, August 18, 2006, August 18, 2007, August 18, 2008, August 18, 2009, August 18, 2010, August 18, 2011, August 18, 2012, August 18, 2015, August 18, 2017, and August 18, 2018.
Current status: Featured article

Covalent radius[edit]

How does the concept of covalent radius make sense for helium, as it doesn't normally bond with anything? If it is based on a measurement of a bond in some actual helium compound, what is the compound? It seems like a reference is needed in the infobox.CountMacula (talk) 15:59, 8 November 2022 (UTC)[reply]

Hmm. In Covalent radius it says: Tabulated values of covalent radii are either average or idealized values, which nevertheless show a certain transferability between different situations, which makes them useful. I suspect the idealized values part allows it. Note that on Covalent radius it has two (very) different values for helium. I suspect that not putting one on this page would be a good choice. Gah4 (talk) 18:30, 8 November 2022 (UTC)[reply]
There are known bound ions containing helium, see Helium compounds#Known ions. I don't think it's too much of a stretch to consider HeH+ to contain a H–He covalent bond, so these values make sense even without idealisation. The bigger problem to my mind is that the two values are very different, as Gah4 says. Double sharp (talk) 17:00, 29 December 2023 (UTC)[reply]

Semi-protected edit request on 6 September 2023[edit]

Where they say that large amounts of helium-4 are made in stars, add to it "and a little more from alpha decaying radioactive materials" or some variation thereof. RealNamesAreFineZ.E.O (talk) 17:06, 6 September 2023 (UTC)[reply]

 Not done: please provide reliable sources that support the change you want to be made. M.Bitton (talk) 21:44, 6 September 2023 (UTC)[reply]

Featured Article status[edit]

This very early FA needs improvement to keep its status; it has had two cleanup banners for years now, on citations and updates. The latter is especially troubling, with sentences such as "is expected to be largely depleted by 2021" and a lack of updates for issues such as conservation, the potential new molecular compounds, and applications usage. I will list this on WP:FARGIVEN, in case anyone wants to take it to FAR. ~~ AirshipJungleman29 (talk) 13:34, 25 March 2024 (UTC)[reply]

@AirshipJungleman29: I see that the clean-up banners are still on the page. Would you be interested in evaluating the article to see if the banners should be removed, or do you want to nominate this to WP:FAR? Z1720 (talk) 22:52, 26 May 2024 (UTC)[reply]

Isn't Helium p-block element[edit]

Many resources consider helium as p block element as it behaves like noble gas AdiDas5501 (talk) 13:55, 9 May 2024 (UTC)[reply]

It is classified as an s block element because the last shell that is filled is the 1s shell. –LaundryPizza03 (d) 04:52, 12 May 2024 (UTC)[reply]